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Localizing a Robot in a Hallway

» consider a robot moving down a hall equipped with a sensor
that measures the presence of a door beside the robot

the pose of the robot is simply its location on a line down the
middle of the hall

the robot starts out knowing how far down the hallway it is located

Kalman-like filters require an initial estimate of the location

robot has a map of the hallway showing it where the doors are
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Kalman Localization

» robot starts out knowing how far down the hallway it is
located
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Kalman Localization

» as the robot moves forward, its uncertainty in its location
shifts and grows according to its motion model
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Grid Localization

» when it reaches a door that can be uniquely identified, it can
incorporate this measurement into its state estimate
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Grid Localization

» as the robot moves forward, its uncertainty in its location
shifts and grows according to its motion model
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Gaussian Assumption

» Kalman-like filters assume that quantities can be represented
accurately as a mean + covariance

e.g., the state is a random variable with Gaussian distribution

e.g., measurements are random variables with Gaussian distribution
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Gaussian Assumption

» assumption is ok here
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Gaussian Assumption

» assumption is (possibly) not ok here
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Gaussian Assumption

» assumption is not ok here (robot does not know which door
it is measuring)

p(robot Is sensing a door | state)
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Non-parametric Filters

» non-parametric filters do not rely on a fixed functional form
of the state posterior

» instead, they represent the posterior using a finite number of
values each roughly corresponding to a region (or point) in
state space

» two variations
partition state space into a finite number of regions
e.g., histogram filter
represent the posterior using a finite number of samples

e.g., particle filter
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Histogram

Histogram of arrivals

“table of frequencies”
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Histogram Filter

» histogram filter uses a histogram to represent probability
densities

» in its simplest form, the domain of the densities is divided into
subdomains of equal size with each subdomain being a bin of
the histogram

the value stored in the bin is proportional to the density
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Histogram Filter

» suppose the domain of the state X is [-5, 5] and that X is a
random variable with Gaussian density (mean 0, variance 1)
using bins of width w = 0.1 we can represent the density using the
following histogram

histogram p
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Histogram Filter

» suppose we want to pass the density through some non-linear

function

-2 -1 0 1

reminder: this is the solution obtained
by passing 500,000 random samples
through f (x), not the result of using a
histogram filter

2

4

0,2=1

6

3/14/2018



Histogram Filter

. create an empty histogram h with bins X ;
2. foreachi

yi =T ()

n; = p(Xc,i)

find the bin b, that y; belongs in

h (b)) =h(b) +n
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A Simple Implementation

dx = 0.05; % width of x bins
XC = -5:dx:5; % bin centers Xx
y = nthroot(xc - 1, 3); %y = f(xc)

n = normpdf(xc, 0, 1); % n = p(xc)

X

dy = 0.1;
yc = -2:dy:2;

width of y bins

X

bin centers y

¥

h = zeros(size(yc));

for i = 1:1length(y)
bk = find(y(i) > yc - (dy / 2) & y(i) < yc + (dy / 2));
h(bk) = h(bk) + n(i);

end

bar(yc, h, 1);

histogram
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Histogram Filter

» alternatively

I, create an empty histogram h with bins X

2. for each bin b,
h(bk) = Z p(Xc,i) in_bin(Yi ’ bk)

yi — f(Xc,i)
In_bin(y;,b,) probability that y is in bin b,
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Histogram Filter

I

0,2
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Grid Localization

» grid localization uses a histogram filter over a grid

4
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decomposition of pose space

consider a robot moving down a hall equipped with a sensor
that measures the presence of a door beside the robot

the pose of the robot is simply its location on a line down the
middle of the hall

the robot starts out having no idea how far down the hallway it is
located

robot has a map of the hallway showing it where the doors are

grid decomposes the hallway into a finite set of nhon-overlapping
intervals

e.g., every 50cm would yield intervals [0, 0.5], (0.5, 1], (1, 1.5], ...
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Grid Localization

» the robot starts out having no idea how far down the hallway
it is located

the histogram of its state density is uniform
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Grid Localization

» because the robot is beside a door, it has a measurement

it can incorporate this measurement into its state estimate

Pial?) measurement liklihood

Bd(s) updated state estimate
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Grid Localization

» as the robot moves forward, its uncertainty in its location
shifts and grows according to its motion model
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Grid Localization

» when it reaches a door, it can incorporate this measurement
Into its state estimate

it now has a pretty good idea where it is in the hallway
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Grid Localization

» as the robot moves forward, its uncertainty in its location
shifts and grows according to its motion model
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Grid Localization Algorithm

I algorithm_grid localization( {p, ..}, u,, z,,m)
2. forall k do

3. P =2, Py motion_model( mean(x,), u,, mean(x;) )
4. Pyt = n Pv.: measurement_model( z,, mean(x,), m)
5. endfor
6. return Pt

{pk,t} histogram

U, control input

Zt measurement

m map

mean(X;) center of mass of grid cell x;
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